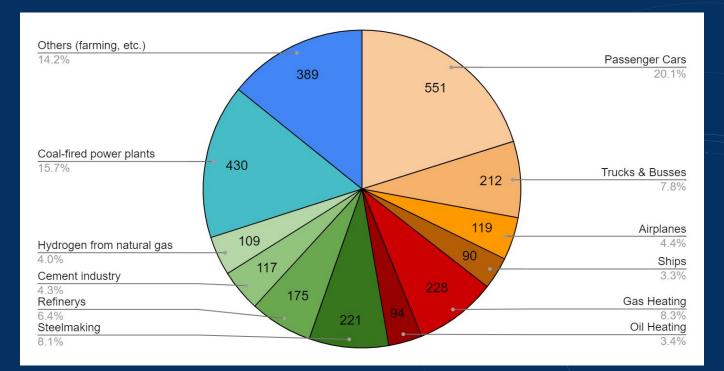

Pathways to decarbonize energy-intensive industries in Europe

Peter Pötschacher Vice President Area Sales 18.11.2021 Vienna

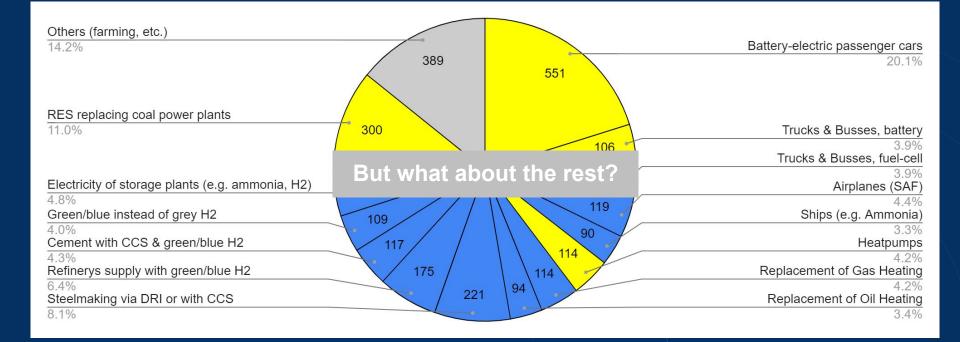
Air Liquide

Limiting global warming requires significant efforts to lower global GHG emissions.



Source: OurWorldinData.org - Climate Action Tracker Licensed under CC BY by Hannah Ritchie & Max Roser

Air Liquide


. CO₂-Emissions in Europe by sector: How can we decarbonize?

In total 2019: ~3,000 Mio. t/pa.

Air Liquide

Electrification can solve some problems, e.g. passenger cars, heatpumps, RES for Power Gen

____ Example no. 1 - Steelmaking

Status quo

•

- Producing 1 t of steel emits 1.8 t of CO₂
- EU27 produce 123 mio.t Steel per year

 \rightarrow Total emissions in EU27: 221 Mio. t

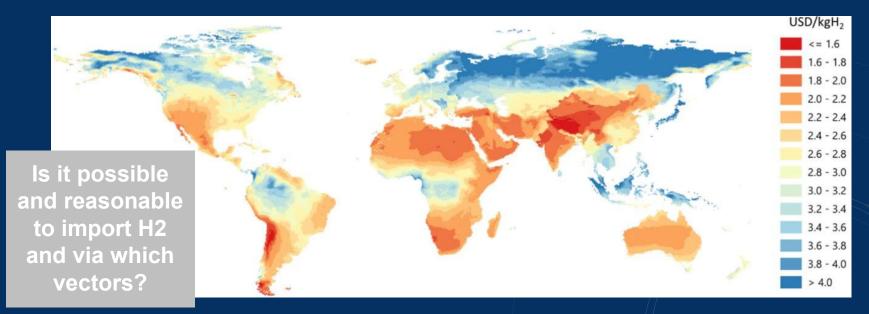
- Direct reduction to iron sponge using Hydrogen
- Carbon capture of blast furnace exhaust
- 60 kg of H₂ required per 1 t of steel
 → 7.4 Mio. t Hydrogen per year for EU27
 → Electricity demand 370 TWh p.a. (50 MWh per t H₂)
- Air Liquide solution:
 - \rightarrow Water electrolyzer plants
 - \rightarrow Carbon capture with amine wash
 - \rightarrow Carbon capture with CryocapTM

___ Example no. 2 - Cement industry

Status quo

- Yearly emission of 117 mio. t of CO₂
- 60% of emissions are process-related
 → Inevitable CO₂ emissions
- 40% of emissions due to process heat, supplied by natural-gas and other carbon-intensive fuels

- Hydrogen as fuel gas (ca. 5 Mio. t of Hydrogen p.a.)
- Carbon capture of 70 Mio. t of CO₂ p.a.
- Air Liquide solution:
 - \rightarrow Water electrolyzers
 - \rightarrow CCS with Cryocap^m / Amine wash


____ Example no. 3 - Hydrogen for refineries and chemical industries

Status quo

- EU27 consumes 10 Mio. t of Hydrogen per year as a chemical
- Vast majority from natural gas via steam reformer (SMR)
- Total emissions of 109 Mio. t CO₂ per year

- Hydrogen from electrolyzer, fed from RES
- Carbon capture for SMR/ATR
- Air Liquide solution:
 - \rightarrow Water electrolyzer plants
 - \rightarrow SMR + Cryocap / Amine wash
 - \rightarrow ATR + ASU + Cryocap

Examples 1 to 3 combined require 22 Mio. t of green Hydrogen p.a. - but where from?

Source: The Future of Hydrogen, Report by IEA, June 2019 Assumptions: ELY efficiency 74%, CAPEX 450 US\$/kW (ELY), 400 - 1,000 US\$/kW (PV), 900 - 2,500 US\$/kW (onshore wind) Hybrid plants combining wind and PV

___. Options to transport Hydrogen

Pipelines

- New, dedicated H₂ pipelines
- Retrofitted natural gas pipelines
- Blending green H₂ into natural gas & H₂ extraction using membranes and PSA

Liquid Hydrogen

- High CAPEX but high efficiency and low energy demand for release
- Liquefiers needs to be scaled up (SK 50 tpd)
- Ships under construction (KHI 90 t/vessel)

Ammonia

- Existing infrastructure can be used
 - \rightarrow lower CAPEX
- Large ships available
- High energy demand for cracking (use as H2)
- Possible direct use, e.g. in power gen.

LOHC

- Liquid Organic Hydrogen Carrier
- Technology needs significant Scale-up. (Covestro 5 tpd Dormagen)
- Today: Conversion efficiency quite low
- Very large ships (supertankers) can be used.

Case study: How can we get the cheapest low carbon Hydrogen to Germany?

HYDROGEN VALUE CHAIN

___ A steep learning curve

HYBALANCE 1.25 MW PEM In operation 2018

< 2017

more than 35 electrolyzers in operation worldwide usual range: 50 - 100 Nm³/h H₂ Mainly Alkaline technology ONSITE

Air Liquide completes the first phase of ultra-high purity low-carbon H2 electrolyzer plants in Taiwan

2019

2020

25 MW in Taiwan Start-up

BECANCOUR 20 MW Largest PEM project In operation

Air Liquide invests in the world's largest membrane-based electrolyzer to develop its carbon-free hydrogen production

Towards 100+MW scale

Air Liquide's 200 MW electrolyzer project in the Netherlands enters the final selection round of European Innovation Fund

ELYgator

An Air Liquide Solution

Air Liquide transforms its network in Germany by connecting a large electrolyzer producing renewable hydrogen

2023

Paris, France, July 29, 2021

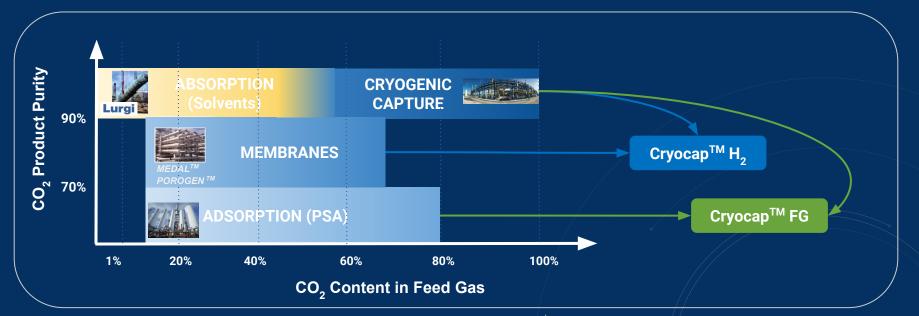
OBERHAUSEN Phase 1 20 MW Phase 2 10 MW Siemens PEM Under execution

H2V NORMANDY 200 MW Largest ELY project Under conception

2023/4

Air Liquide makes a strategic investment to support large scale renewable hydrogen production in France

Paris, France, January 20, 2021


____ A complete range of products for carbon capture and liquefaction

	ABSORPTION						
H ₂ Production	Oxycombustion	Steel Production	>15% Flue Gas (Cement, Refineries, H2)	Natural Gas	CO ₂ Liquefaction	Syngas Flue gas	Syngas
CRYOCAP™ H ₂	CRYOCAP™ OXY	CRYOCAP [™] Steel	CRYOCAP™ FG	CRYOCAP™ NG	CRYOCAP [™] XLL	MDEA 2G amines	Recticap [™] Rectisol [™]
	Steam driven	Large scale ATR/POX					

• Air Liquide

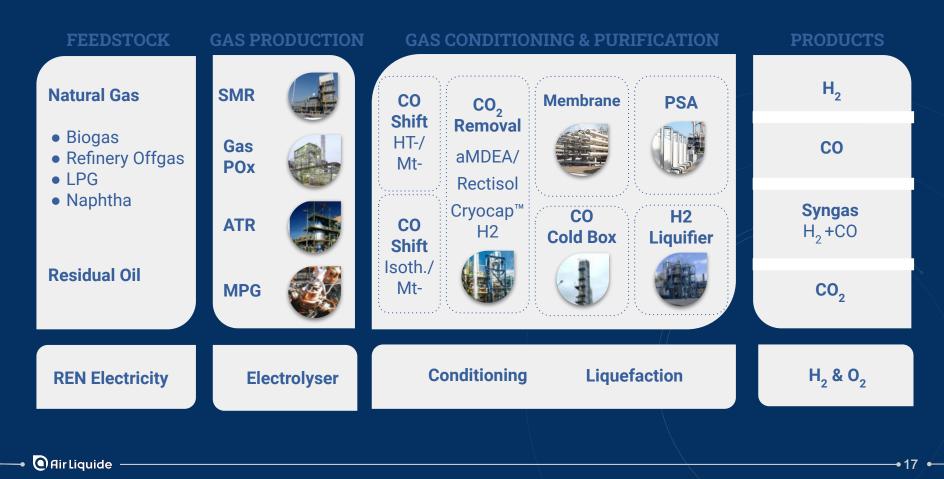
•13 🛏

____ Air Liquide core technologies

Absorption: The most suitable solution for low concentrated feed gas

Cryocap[™] combines cryogenic with membranes & adsorption, addressing any CO2% > 15%, electrical power only. Can produce HP CO₂ or Liquid CO₂ at marginal extra cost. HP CO₂/Liquid CO₂: Looking for synergies between capture and compression / liquefaction steps is key

AirLiquide


____ Key messages - Takeaways

- **Electrification** is one of the key solutions to decarbonize some significant sectors
- Abt. 50% of CO2 emissions can only be prevented directly or indirectly using low carbon energy vectors such as Hydrogen/Ammonia.
- Additionally, unavoidable CO2-emissions can be prevented using CCS
- Tomorrows energy transport will be carried out using Liquid Hydrogen, Ammonia and (Hydrogen) Pipelines
- Air Liquide has the key-technologies inhouse and will play a major role in the transition of our energy and industrial ecosystem.

Let's discuss!

___ AL Techno routes for low carbon Hydrogen & Syngas

___ Example no. 4 - Energy Transport

Status quo

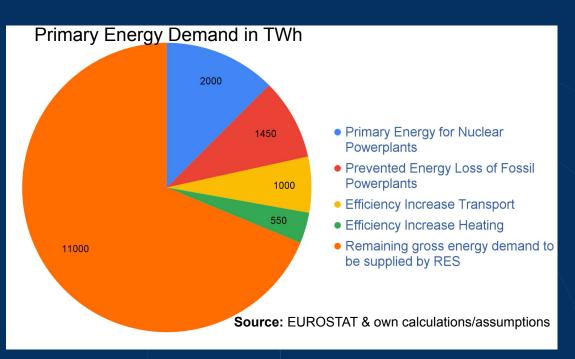
- Limited transport capacity via power grid
- Fossil primary energy carriers transported by ship & pipeline (coal, oil, natural gas)

- Energy transport using liquid
 Hydrogen, Ammonia, LOHC or Hydrogen
 Pipelines
- Air Liquide solution:
 - → Water electrolysis + Liquefaction
 - \rightarrow Water electrolysis + Ammonia loop
 - \rightarrow Pipelines + Membranes + PSA

____ Can we get 11,000 TWh of green energy in Europe?

• In 2019, EU27 harvested ca. 1,000 TWh from RES \rightarrow **11-fold increase required**

• However, studies show that in principle this is possible from a pure-technical view


- [1]: EU27 can harvest 15,000 TWh/year from wind and PV
 - Rooftop PV on all suitable roofs, open-field PV on bare land and open vegetation
 - No PV on farmland, no wind and no PV in environmentally protected zones.
 - Onshore wind on farmland, forest, open vegetation and bare land
 - Only 1 out of 10 suitable locations are used.
- [2]: Even in the case with maximum restrictions, rooftop & free-field PV as well as on- & offshore wind in EU28 can deliver 11,900 TWh/year (3% available area for PV, high restrictions for onshore wind)
- Yes, it appears we can harvest the energy in principle, but at what cost and in what timeline, and under which environmental & social aspects?

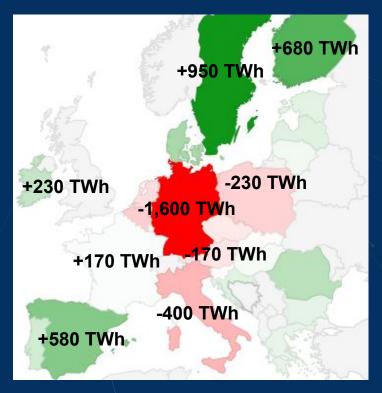
[1] T. Troendle et al., Home-made or imported: On the possibility for renewable electricity autarky on all scales in Europe, Energy Strategy Reviews (26), 2019, DOI: 10.1016/j.esr.2019.100388

[2] C. Ruiz et al., ENSPRESO - an open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials, Energy Strategy Reviews (26), 2019, DOI: 10.1016/j.esr.2019.100379

—. How much low carbon energy do we need to replace all fossil primary energy use in Europe?

- In 2019, EU27 had **16,000 TWh** of **Primary Energy Demand**
- Do we need to replace all that?
 - From a decarbonization stand point Nuclear power does not need to be replaced
 - Energy Transition brings significant energy savings that reduces primary energy demand
 - Vectors for storage and transport will increase the demand but not compensate the saving

• Taking this into account, RES need to deliver **11,000 TWh of energy**


While in total, EU27 has sufficient RES potential, significant local surpluses and deficits will arise

 \rightarrow Study [1] also includes spatial resolution, that reveals very significant need of inter-european energy transit

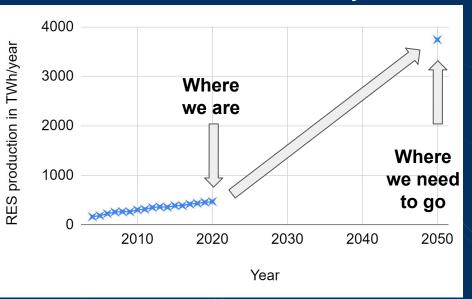
For comparison:

- Electricity: Germany plans additional lines of 8 GW to transport wind energy from north to South → Annual capacity: 70 TWh / year
- Natural gas (Pipeline): North Stream 2 has a capacity of 55 bn. m^3 per year \rightarrow 550 TWh / year
- **Hydrogen:** Energy deficit of Germany corresponds to 48 Mio. t of Hydrogen (1,600 TWh)

[1] T. Troendle et al., Home-made or imported: On the possibility for renewable electricity autarky on all scales in Europe, Energy Strategy Reviews (26), 2019, DOI: 10.1016/j.esr.2019.100388

____ Example: Transport 1,000 Tonnes of Hydrogen

	Unit	gH2 500 bar	LH2	NH3	LOHC
Space vector	m³	30,000 r 30 kg/m³	14,000 ^{r 71 kg/m³}	8,300	17,500
Mass vector	t	18,000*	5,000**	6,500	18,200
Energy demand conversion	kWh / MWh	50 - 70 (el.)***	240 - 300 (el.)	220 (el.)	90 (el.)
Energy demand release	kWh / MWh	0	15 (th.)	40 (th.) 250 (th.)	250 - 300 (th.)


*A 500 bar trailer stores 1,100 kg of Hydrogen, assumed weight 20 t

** A LH2 trailer stores 4,000 kg of Hydrogen, assumed weight 20 t

*** Compression from 30 to 500 bar

____ Timeline - Can we just wait for RES expansion?

- RES extension is extremely large and capital intensive.
- To slow down climate change as quickly as possible, additional faster and cheaper solutions are required.
- Carbon-Capture & Storage (CCS) is a well-established and cost effective process to decarbonize fossil Hydrogen processes and processes with unavoidable CO2-emissions, such as cement production.

Situation in Germany